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We investigate equilibrium properties of small world networks, in which both connectivity and spin vari-
ables are dynamic, using replicated transfer matrices within the replica symmetric approximation. Population
dynamics techniques allow us to examine the order parameters of our system at total equilibrium, probing both
spin and graph statistics. Of these, interestingly, the degree distribution is found to acquire a Poisson-like form
�both within and outside the ordered phase�. Comparison with Glauber simulations confirms our results
satisfactorily.
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I. INTRODUCTION

Small worlds are systems characterized by a local neigh-
borhood �given by short-range bonds� with a sparse set of
long-range connections per spin. This simple architectural
effect has been shown to bring about remarkable cooperative
and synchronization phenomena. The term “small world”
was coined by the now famous experiment by the Harvard
social psychologist Stanley Milgram �1�. In 1967, as part of
his research on the network of acquaintances in the United
States, he took a number of letters and handed them over to
people totally unrelated to the addressees, with instructions
to pass them over to someone they thought might know the
addressee. This process was repeated until the letters finally
arrived at their destinations. Milgram then estimated the av-
erage path length from two randomly chosen individuals,
which turned out to be a mere six. This experiment revealed
that although social networks are very sparse, in reality any
two pair of nodes can be topologically very close. In fact,
numerical studies of other types of real networks �e.g., cita-
tion, linguistic, disease spreading, etc.� show that the small-
world effect is a common architecture among real network
structures and brings about optimal information processing.
The question then arises, how do networks spontaneously
evolve from �almost� random configurations into particular
structures such as small-world ones? And which underlying
process drives the distribution of the long-range shortcuts
within the nodes? The above questions fall under a particu-
larly active area of research, namely the evolution of net-
works �see, e.g., �2,3�, or �4�, for recent reviews�. Since real
networks �be they biological, social, economic, or otherwise�
hardly ever maintain a static architecture, this problem of
predicting network structure has important applications. In
this paper we attempt to formulate and describe the thermo-
dynamics of the problem from an analytic point of view. This
carries the obvious set of advantages and disadvantages:

while resulting in robust and exact results, it will be ame-
nable to a set of �perhaps not fully realistic� assumptions. To
be precise, we examine a coupled system on a small-world
architecture in which both nodes and connections are mobile.
However, the two dynamic processes occur on distinct time
scales; connections are assumed to evolve slowly enough
such that, at each of their update steps, spins have effectively
reached equilibrium. This will allow us to avoid solving the
explicit dynamical relations and instead turn directly to the
thermodynamics. Our starting point is the free energy per
connection degree of freedom. We couple the two dynamic
processes of the spins and the connections by constructing
two Hamiltonians: a typical Ising one describing the energy
of the spins and a Hamiltonian of the connections, con-
structed to reward network configurations minimizing the
free energy of the spins. This choice allows us to proceed
analytically while retaining a sufficient amount of realism.
The result is a replica theory where the replica dimension
represents the ratio between the two temperatures �of the
spins vs connection processes� �5,6�.

Our paper is organized as follows: In the following sec-
tion we introduce our model and the pair of energy functions
describing the thermodynamics of the spins and the graph
variables. In Sec. III we write the total free energy of the
system as an extremization problem in terms of the typical
finite-connectivity order parameter function. We then pro-
ceed to define the observables of our system, of which there
are here two kinds, probing spin �Sec. IV A� and graph �Sec.
IV B� organization statistics, respectively. The replica sym-
metric approximation �Sec. V� allows us to deal with the
resulting replicated transfer matrices following the diagonal-
ization process of �7,8�. We first derive in Sec. V A numeri-
cally tractable forms for our set of order functions which are
to be solved via population dynamics. We perform a bifurca-
tion analysis and plot phase diagrams showing the transition
lines between ordered and paramagnetic phases in Sec. V B.
Observables such as magnetization, average connectivity, or
degree distribution then follow easily, see Sec. V C. We find
that, perhaps contrary to initial expectations, the resulting
degree distributions are close to, or exactly, Poisson. Com-
parison with numerical simulations shows good agreement
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given the complexity of these experiments requiring adia-
batic �practically infinitely long� time scales.

II. MODEL DESCRIPTION

We study a system of N Ising spins �= ��1 ,… ,�N� with
�i� �−1,1�, arranged on a small-world structure. We repre-
sent this by a one-dimensional lattice with uniform nearest-
neighbor interactions of strength J0 and with randomly cho-
sen sparse shortcuts of strength Jij � �−J ,J� that can connect
any distant pairs of spins �i , j�. We will consider that the
coupling strength Jij is independent of �i− j�, namely the dis-
tance between the pair of spins. For every i� j we assign a
variable cij, denoting whether a connection exists �cij =1� or
not �cij =0�, with cii=0. In the absence of shortcuts the aver-
age path length is N /4, while in the combined system the
scaling is bounded above by log�N�. This significant reduc-
tion in the path length is commonly termed the “small-world
effect” �9�. For static architectures, in which the link and
bond matrices �cij ,Jij� are taken as quenched random vari-
ables, frustration effects are known to induce spin-glass
phases �8�.

Our model aims to examine the thermodynamic properties
of the above spin systems under the freedom of allowing the
connectivity and bond matrices �cij ,Jij� to evolve in time in
search of the state that best promotes order within the sys-
tem. To be precise, on short time scales the links and bonds
can be seen as static variables with respect to which the spins
equilibrate, while on longer time scales cij and Jij explore
their configuration space. The measure of this latter process
is related to the ordering within the spin system on the in-
stantaneous state of the graph. Thus the spins and the graph
architecture on which they live are dynamically interwoven.
It is quite natural that the architecture dynamics depends on
the entire system state �including the spins� rather than just
the architecture itself �as with, e.g., preferential attachment
�10��. Links and connectivities are taken here to evolve on
identical time scales, although generalizing this to more in-
volved scenarios is also possible. On the time scale in which
spins reach thermal equilibrium, our combined system is de-
scribed by the “fast” Hamiltonian

Hf��,c,J� = − J0�
i

�i�i+1 − �
i�j

�iJijcij� j �1�

�where we take periodic boundary conditions on the chain�.
Spins equilibrate with respect to �1� at a temperature Tf
=1/� f �we assume that the Boltzmann constant kB=1�, and
their behavior is described by the partition function

Zf�c,J� = �
�

e−�fHf��,c,J�. �2�

On time scales sufficiently long to guarantee that spins have
reached equilibrium, links and bonds are not static, but
evolve dynamically and we will take their stationary state to
be described by the “slow” Hamiltonian

Hs�c,J� = −
1

� f
log Zf�c,J� + V�c,J� , �3�

V�c,J� =
1

�s
�
i�j

cij	log
N

c
� + log cosh�KpJ� − KpJij� .

�4�

This choice energetically favors those configurations of
�cij ,Jij� that minimize the free energy of the spins. The role
of the chemical potential V�c ,J� is twofold: first, it aims to
preserve the overall nature of the small world system and it
guarantees that for N→� the average number of connections
per spin is a finite number. Second, it allows us to tune the
relative concentration of �−J ,J� bonds in the system. These
two roles of the chemical potential can be described by ob-
servables such the average number of connections and the
average number of ferromagnetic bonds and are controlled
by the parameters c� �0,�� and Kp� �−� ,��, respectively.
To understand the precise way in which this occurs one must
add suitable generating terms to the free energy and subse-
quently extract the relevant observables. As the exact depen-
dence of the system’s observables on the control parameters
Kp and c will only be clear once the free energy is evaluated,
we will postpone the discussion on the physical meaning of
Kp and c until Sec. III and IV B. We only mention here that
in the limit n→0,c becomes the average connectivity and Kp
controls the bias in the bond distribution.

The connectivity and bond variables �cij ,Jij� equilibrate
with respect to this slow Hamiltonian at inverse temperature
�s, leading to a total partition function

Zs = �
c,J

e−�sHs�c,J� = �
c,J

�Zf�c,J���s/�fe−�sV�c,J�. �5�

This partition function, by construction, contains n=�s /� f
replicas of the fast system. In general, the ratio of inverse
temperatures n can take any value �integer or otherwise�, so
that analytic continuation in the replica dimension depends
solely on our choice of temperature values. The limit n→0
corresponds to temperatures Ts→� in which the partition
sum �5� is dominated by the entropy of the slow system.
Such coupled dynamic processes, which by construction ad-
mit an exact analytic solution, have been introduced in Refs.
�5,6�. In contrast, Ts→0 favors those architectures �cij ,Jij�
that increase order among the spin variables for a given num-
ber of links. Note that this is a general optimization criterion
which does not enforce a priori any particular structure on
the links but allows the links to arrange themselves. In fact,
the graph statistics become interesting observables, which
we can measure, rather than enforced constraints. Our order
parameters follow from the slow free energy per spin

fs = − lim
N→�

1

�sN
log Zs �6�

and derivatives of this generating function.

III. THE FREE ENERGY

To calculate the slow partition function �5� we first take
the trace over the connectivity and bond variables �cij ,Jij�
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Zs = �
�1¯�N

e�fJ0�
i

�i·�i+1

i�j

	1 +
c

N
�e�fJ�i·�j�J� �7�

up to irrelevant multiplicative constants. We denote �i
= ��i

1 ,… ,�i
n�, where �i ·� j =���i

�� j
� and define the abbre-

viation �f�J��J=rf�J�+ �1−r�f�−J�, and the probability r
��2 cosh�KpJ��−1eKpJ. For Kp→�, one has r=1. In this case
all bonds in the system are strictly ferromagnetic at any
given time. On the other hand, for Kp→−�, one has r=0,
and all bonds in the system are strictly antiferromagnetic at
any given time. Thus, we see that the role of the parameter
Kp is to control the ratio of ferromagnetic/antiferromagnetic
couplings. With a modest amount of foresight we can antici-
pate from �4� that the limit c→� will lead to a densely
connected system �this is indeed the case as we explicitly
show later in Eq. �35��. As we are interested in small-world
structures, we will consider that the control parameter c is
finite, and hence c /N→0 in the limit N→�, so that the
above product �7� can alternatively be seen as a product over
exponentials �up to terms of O�N−2��. We thus encounter the
typical nested exponential form of finite connectivity prob-
lems. To achieve site factorization it is convenient to intro-
duce into our expressions the order parameter function
�11,12�

P��� =
1

N
�

i

��,�i
�8�

via appropriately defined delta functions, which is a prob-
ability distribution over replicated spins. In the limit N→�
we can now evaluate the free energy �6� via the steepest
descent and express it as an extremization problem in the
space of probability distributions P���, namely,

fs = extr�P����� c

2�s
�
���

P���P�����e�fJ�·���J

− lim
N→�

1

�sN
log �

�1¯�N



i

T�i,�i+1
�P�� , �9�

where T�,���P� represent the transfer matrix elements

T�,���P� = exp	� fJ0� · �� + c�
�

P����e�fJ�·��J� , �10�

and P��� is to be evaluated from the fixed-point equation

P��� =
Tr�Q���TN�P��

Tr�TN�P��
Q�,����� � ��,���,��. �11�

For more details on the derivation of the above expressions
we refer the reader to Ref. �8� where the special case of the
limit n→0 was studied.

Finding solutions of �11� amounts to diagonalizing the
transfer matrix T of dimensionality 2n	2n. This problem has
been solved in Ref. �7�. Here we will not be concerned in the
entire spectrum of eigenvalues, as the limit N→� ensures
that only the largest eigenvalue 
0 will provide a nonvanish-
ing contribution to the free energy. The left and right eigen-
vectors associated with this eigenvalue follow from the equa-
tions

�
��

T�,���P�U���� = 
0U��� , �12�

�
��

V����T��,��P� = 
0V��� . �13�

These eigenvectors are unique up to the usual arbitrary mul-
tiplicative factor and are non-negative �7,13�. We note that
we need both left and right eigenvectors since the transfer
matrix T�P� is nonsymmetric. The order function P��� �8� is
manifestly normalized. Due to our scaling freedom for the
eigenvectors we can always choose them so that ��U���
=��V���=1. The physics of our system is given by the nor-
malized distributions P��� ,V��� ,U���, which are to be
found by self-consistently solving Eqs. �10�–�13�. In fact,
U��� and V��� turn out to represent the distributions of cav-
ity spins with a chain bond rather than a graph bond removed
�13�.

IV. OBSERVABLES

A. Spin system observables

We are interested in probing the organizational properties
of our system both within the spin variables and the connec-
tivity ones. For the spin system, we define the canonical
observables; the magnetization and the overlap order param-
eter as moments of the probability distribution �8�, namely,

m� = �
�

P�����, �14�

q�� = �
�

P�������. �15�

In the above pair of equations and henceforth, the quantities
P��� ,V���, and U��� are given by their saddlepoint values.

It is well known that infinite dimensional systems, such as
small world lattices, with frozen bonds of random signs, will
have a spin-glass ground state at low temperatures for certain
values of the control parameters �14–16�. This spin-glass or-
dering is intimately linked to frustration within the system;
the inability of spins to find energetically optimal configura-
tions. By allowing the architecture some limited degree of
freedom, we expect that the system will be able to optimize
its state somewhat better. Probing the degree of frustration
within the system as the slow temperature is varied is an
interesting problem. The frustration is normally defined as
the fraction of closed loops from sites i1→ i2→¯ ik→ i1,
where the product Ji1i2

¯Jiki1
is negative. Unfortunately, to

measure this directly in our system where bonds are mobile,
would require us to be able to measure correlations over long
length scales within the system �in fact, scaling like the av-
erage loop length �log�N��, which is technically difficult. To
try to finesse this problem, as in Refs. �17,18�, the fraction of
misaligned spins was calculated, i.e., the fraction of spins
that did not point in the direction of their local field. Due to
the mobility of the connections in our system, we expect that
thermal equilibrium states within the ordered phases will be
steered toward configurations where spin alignment with

DYNAMIC REWIRING IN SMALL WORLD NETWORKS PHYSICAL REVIEW E 72, 066105 �2005�

066105-3



their local fields is optimal. The result of this structural or-
ganization can be measured by the quantity �

=�−�
0−

dh P�1,h�+�0+
� dh P�−1,h�, which gives the fraction of

misaligned spins and is defined in terms of the joint spin-
field distribution

P��,h� = lim
N→�

�1/N��i
���,�i

��h − hi�����s,

where �¯�s denotes thermal averages over the slow process
�x�s=Zs

−1�c,Je−�sHs�c,J�x, and hi����� jcijJij� j +J0��i+1

+�i−1� denotes the local field at site i. However, at, e.g., very
low temperatures, one expects the spins to align to their local
fields whether they are in a spin-glass phase or not. Thus, to
try to get a different measure to probe the frustration in the
system we consider the fraction of bonds in the graph, which
is not energetically optimized by the spin configuration

� =
1

N
�

i

�
�− �i�i+1J0��s +
1

cN
�
i�j

�cij
�− �i� jJij��s.

�16�

This is also not an absolute measure of frustration, but in the
low temperature spin-glass phase � will be nonzero, as op-
posed to a low temperature ferromagnet where we would
have �=0. The calculation of either � or � is similar to the
calculation of the free energy, with a specific observable �i.e.,
matrix in the transfer matrix notation� at one or two sites. We
find

� = D1 �
���

V���
�− �1��1J0�T����P�U����

+ D2 �
���

P���P�����
�− �1��1J�e�fJ�·���J, �17�

where D1 and D2 are normalization constants to give the
fraction of sites, i.e., D1=����V���T����P�U���� and D2

=����P���P�����e�fJ�·���.

B. Connectivity system observables

Let us now inspect organizational phenomena within the
graph. We first identify the roles played by the control pa-
rameters c and Kp that appear in the chemical potential �4�.
This can be done by adding suitable generating terms into
the Hamiltonian �3� and monitoring their impact on �9�. For
instance, if one transforms Hs→Hs+
�1/c��i�jcij, then tak-
ing derivatives ��fs /�
��
=0 translates to

c̄ �
1

N
�
ij

�cij�s = c�
��

P���P����e�fJ�·��J. �18�

Now c̄ represents the average number of connections per
spin in our system. It depends on the replica dimension n via
the scalar spin product and it reduces to c̄=c in the limit n
→0. In the limit c→� �scaling J as J /c to keep the local
fields in the graph hi

gr����� jcijJij� j of O�1�� we again re-
cover c̄=c to leading order as found in �17�. Similarly to the
above, one also finds that taking Hs→Hs+
�i�jcijJij pro-
duces the average bond strength on the graph. As well as

being interested in the above average connectivity and bond
strength at total equilibrium, we would also like to investi-
gate the connectivity structure in more detail. To make con-
tact with a variety of recent work on complex networks
�4,19� we define the degree distribution for our system

��k� = lim
N→�

1

N�
i ��k,�

j

cij�
s

. �19�

Following a calculation similar to that of the free energy in
Sec. III one finds that

��k� � � dk̂

2�
eikk̂ �

���

V���U����exp	c�
�

�P���e�fJ�·�−ik̂�J

+ � fJ0� · ��� . �20�

We have absorbed the normalization constant of the above
distribution in the symbol � �we will repeatedly use this
short-hand notation from this point onwards�. The above ob-
servables are all expressed in terms of the trio of distribu-
tions P��� ,V���, and U���, taken at the saddle point of the
free energy �9�. To proceed with a numerical evaluation of
the observables one now needs to specify a form for these
densities.

V. REPLICA SYMMETRY AND TRANSFER-MATRIX
DIAGONALIZATION

To solve the self-consistent Eqs. �11�–�13� one is required
to make certain assumptions. These equations represent dif-
ferent distributions over replicated spins �for any n�R�. We
will consider the simplest possible scenario in which permu-
tation of spins within different replica groups �=1,… ,n
leave the order functions invariant �replica symmetry�.

For any natural n�N+ it is relatively straightforward to
express these distributions, as their support is a finite discrete
set. For the more general case of n�R one has to make an
analytic continuation which leads to more complicated ex-
pressions. For the sake of clarity we will presently restrict
ourselves to n�R. A detailed analysis of the special case of
n�N can be found in Appendix I.

For any real n we require

X��� =� dz x�z�

�=1

n
ez��

�2 cosh�z��
. �21�

This ansatz holds for any distribution X��� and in particular
as X� �P ,U ,V� we define the ansatz in terms of the densities
x� �p ,u ,v�. Normalization requires �dz x�z�=1.

Note that for any n�N+ one can in principle solve Eqs.
�11�–�13� without making any assumption about the structure
of the replica space �symmetric or otherwise�: for integer n,
the vectors � retain a well-defined dimensionality and the
diagonalization of the matrix �10� is a straightforward, albeit
tedious, problem. This approach is therefore a good test of
the validity of the replica symmetric approximation. How-
ever, as we will see shortly, imposing replica symmetry in
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our equation leads to computational costs of O�n� instead of
O�2n�, which is the result of the above “exact” approach.
Therefore, only relatively small values of n are practically
feasible. Furthermore, we know that for n=1, the order func-
tion can trivially be written as P���= P������, which im-
plies that replica symmetry is in this case exact. For higher
values of n, we do not expect violation of the replica sym-
metry as the spin system is embedded in a higher tempera-
ture bath than for n=1. If this is true, then our solution is
exact for n�N+.

A. Self-consistent order function equations

In this section we aim to derive a closed set of equations
for the trio of densities �p ,u ,v�. First, a Taylor expansion of
the transfer matrix elements �10� into a series of exponentials
and insertion of the replica symmetric ansatz �21� leads to

T�,���P� = e�fJ0�·���e�f�������, �22�

with �¯�� representing averages over the measure

M���n = �
k�0

e−cck

k! �� 	

l�k

dhlp�hl�
�2 cosh�hl��n�

	en�lB�Jl,hl��	� − �
l�k

A�Jl,hl���
�Jl�

, �23�

and where we introduce the functions

A�J,x� = a tanh�tanh�� fJ�tanh�x�� , �24�

B�J,x� =
1

2
log�4 cosh�� fJ + x�cosh�� fJ − x�� . �25�

The latter of the above equations is related to the free energy
shifts which occur during an iteration �16,20�. For n→0 and
within replica symmetry, this second term does not contrib-
ute, although in the more general case of n�0 it will play an
important role. Equation �24� can be identified as a “mes-
sage” �or effective field� passed during belief propagation.
This is an efficient algorithm that can solve inference prob-
lems on sparse graphs and is related to the Bethe approxima-
tion in statistical mechanics �21�. Following the belief propa-
gation picture, one can also relate �23� to a weighted measure
over the messages coming from the long range bonds. Per-
forming the spin summations in �12� and �13� using the an-
satz �21� and requiring the resulting expression to have the
eigenvector form leads to


0�n�u
x�n�� =� dx�u
x��n��
coshn�x�
coshn�x��

	�enB�J0,x����x − � − A�J0,x�����, �26�


0�n�v
y�n�� =� dy�v
y��n��
coshn�y�
coshn�y��

	�enB�J0,y�+����y − A�J0,y� + �����,

�27�

so that the largest eigenvalue follows from the above by

simple integration. To close the above equations we also
need to derive an expression for the function p�h�. The start-
ing point for this is Eq. �11�. Rewriting the traces in terms of
the eigenvectors and substituting our ansatz �21� results in

p�h� =
� dxdy u�x�v�y�� cosh�h�

2 cosh�x�cosh�y��n

��h − �x + y��

� dxdy u�x�v�y�� cosh�x + y�
2 cosh�x�cosh�y��n

.

�28�

The coupled set of Eqs. �26�–�28� are to be solved self-
consistently. They have a clear interpretation in terms of
message-passing algorithms: p�h� gives the distribution of
messages passed along long-range shortcuts, whereas u�x�
and v�y� give that of messages passed along the chain �from
the left and right neighbors�. The numerical solution of these
equations follows along the lines of the population dynamics
methodology of �20�.

B. Phase diagrams

Having derived the main equations from which our ob-
servables follow, namely �26�–�28�, we can now proceed to
the evaluation of the transition lines in our phase diagram
numerically and via a bifurcation analysis. First, we see that
the state p�x�=u�x�=v�x�=��x� always solves Eqs.
�26�–�28�, giving m=q=0 for all temperatures. We can there-
fore associate this state with the high-temperature �paramag-
netic� solution. To examine continuous bifurcations away
from this solution we assume that close to the transition the
fields are small, and that the paramagnetic � distributions
evolve to either a distribution of small, nonzero means �in
leading order� marking the paramagnetic to ferromagnetic
transition or to a distribution of small, nonzero variances
�again in leading order� marking the paramagnetic to spin-
glass �SG� transition. With these considerations in mind we
define the moments h�=�dh p�h�h�=O���� for some 0��
�1 �and similarly for x�=�dx u�x�x� and y�=�dy v�y�y��.
We assume that there is no first order transition. Then, ex-
panding Eqs. �26�–�28� for the small values of fields and

using h̄= x̄+ ȳ and h2=x2+y2, which follows from �28� we
arrive at paramagnetic to ferromagnetic and paramagnetic to
spin-glass transition lines

P → F: 1 = c�sinh�� fJ�coshn−1�� fJ��Je
2�fJ0, �29�

P → SG: 1 = c�sinh2�� fJ�coshn−2�� fJ��Jcosh�2� fJ0� .

�30�

These equations reduce to those found in Ref. �8� in the limit
n→0, recovering the small-world bifurcations. The corre-
spondence is exact if we identify the paramagnetic mean
connectivity here with c. It also reduces to those of Ref. �18�
for J0=0 and r=1 �where r was defined in Sec. III and rep-
resents the probability of any given bond to be ferromag-
netic�. For these parameters, the model of Ref. �18� is a
Hopfield model on a dynamic random graph with a single
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pattern stored �in this scenario the Hopfield model becomes
equivalent to a ferromagnet with a different gauge�. It is well
known for these models �18� that as n increases, the transi-
tions are increasingly likely to be of first order. Thus, to
produce phase diagrams of the system, as well as looking at
the bifurcation lines given by the above, we also solved the
full equations numerically. Results are shown in Fig. 1 where
we see that increasing n decreases the size of the spin-glass
phase, which we expect is due to the increased cooperativity.

C. Observables within replica symmetry

Let us now express our observables in terms of the den-
sities �p ,u ,v� and within replica symmetry. First, the mag-
netization �14� and overlap �15� order parameters become

m =� dh p�h�tanh�h� , �31�

q =� dh p�h�tanh2�h� , �32�

so that given the stationary profile of p from the self-
consistent Eqs. �26�–�28� we may evaluate any of the above.
In Fig. 2 we plot the magnetization for two different values
of n, and compare our results against simulation experi-
ments. More details on the simulations are given in Sec.
VI B. Let us note here that due to the coupled dynamical
processes, these experiments are particularly time consuming
so that only modest system sizes are allowed within reason-
able CPU cost. Within these constrains we feel that the
agreement is reasonable.

Evaluating the fraction of energetically nonoptimal bonds
� is slightly more involved. The replica symmetric transfer
matrix is given by

FIG. 1. We plot the phase dia-
grams for c=2 and J=J0=1. Panel
�a� is for n=0.1, where the solid
lines are given by the bifurcation
conditions �29� and �30�, while the
markers come from solving the or-
der parameter equations numeri-
cally, and the dotted line linking
markers is a guide to the eye.
Panel �b� is for n=2 and all lines
are linking markers which come
from solving the order parameter
equations numerically. The P→F
and P→SG transitions are here
first order. For larger values of n,
we see that the links are better
able to align to increasing order.
First, the transition temperature
from the paramagnetic phase is
higher and second, the size of the
spin-glass phase is significantly
smaller.
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T�,���P� = e�fJ0�·��� d�M���e�f��
�

�� �33�

leading to

� = D1� dxdyd� u�x�v�y�M���

	
e−�fJ02 cosh�x + � − y�

�ey2 cosh�x + � + � fJ0� + e−y2 cosh�x + � − � fJ0��n−1

+ D2� dh1dh2p�h1�p�h2�

	e−�fJ
r2 cosh�h1 + h2� + �1 − r�2 cosh�h1 − h2�

�eh22 cosh�h + � fJ� + e−h22 cosh�h − � fJ��n−1 .

�34�

We plot � for a few sets of parameters in Fig. 3. As the
fast temperature goes to �, we have �→1, i.e., exactly half
of the bonds at any point in time are energetically optimal, so
in the high temperature phase the ordering is nonexistent �as
one would expect�. We also see that increasing n leads to
better levels of optimization. This is again what one would
expect, but it is possible to quantify it here. Decreasing the
probability r �of any bond to be ferromagnetic� and hence
increasing the disorder, makes it harder for the spins to en-
ergetically optimize themselves, although at low tempera-
tures, due to the condensation phenomena in the bonds �see
below�, the magnetization will increase to 1. With all spins
aligned, the fraction of energetically nonoptimal bonds be-
comes exactly the fraction of bonds with J�0. We see this in
Fig. 3, as Tf →0,�→1−r. This would not be the case for a
fully unbiased bond distribution r=0.5, where ferromagnetic
ordering in the spins is ruled out for any value of n and Tf.

FIG. 2. We plot the magnetiza-
tion m as a function of tempera-
ture Tf for n=1 �lower lines� and
n=5 �upper lines�. The solid lines
are the theoretical predictions.
Dotted lines are a guide for the
eye, joining the markers with error
bars which come from simula-
tions. For the coupling strengths
we have taken J0=J=1, while
for the control parameters we
have chosen c=2, and Kp=�
�equivalently, the probability of a
bond to be ferromagnetic r
=eKpJ /2 cosh�KpJ�=1�. The simu-
lations were done via Monte Carlo
Glauber dynamics on N=200
spins, see Sec. VI B for details.
Despite the small system size they
seem to be in reasonable agree-
ment with the theory.

FIG. 3. We plot the fraction of
misaligned bonds � against the
temperature Tf. For the coupling
strengths we have taken J0=J=1,
and the control parameter is c=2.
The solid lines are for n=1, while
the dotted lines are for n=3. The
upper pair of lines are for r=0.8,
while the lower pair are for the r
=1, where r describes the prob-
ability of any bond within the
graph to be ferromagnetic. We see
that in the ordered phase, increas-
ing n allows the system to opti-
mize the bonds energetically.
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We now turn our attention to the graph observables. We
first focus on the average connectivity, which is expressed as

c̄ = c� dh1dh2p�h1�p�h2��cosh�� fJ�

+ tanh�h1�tanh�h2�sinh�� fJ��n. �35�

In Fig. 4 we plot c̄ against Tf. We have taken r
=eKpJ /2 cosh�KpJ�=1, i.e., all bonds at any given point in
the system are of uniform strength J with probability 1. At
low temperatures �the specific temperature depends on other
parameters�, the average connectivity increases sharply. This
is due to ordering within the spin system, leading to an in-
creased energetic gain by adding connections. Higher values
of n, for a given Tf, means a lower value of Ts and hence the
connectivity variables will be governed more strictly by the

free energy of the fast system, which is minimized by high
connectivity configurations.

We also looked at the full degree distribution, which is
given up to normalization constants by

��k� �
ck

k!
� 


��k
�dh�dJ�p�h��Q�J��

�2 cosh�h���n � dxdy u�x�v�y�
�4 cosh�x�cosh�y��n

	en�
�

B�J�,h��+nB�J0,x�

	 �2 cosh	y + A�J0,x� + �
�

A�J�,h���� . �36�

A typical example of this degree distribution is given in Fig.
5. What is particularly interesting is that although the degree
distribution is in principle free, to take on any form it keeps
very close to that of the Poisson degree distribution with

FIG. 4. We plot the average
number of bonds c̄ against the fast
temperature �of the spin systems�
for coupling strengths J=J0=1,
control parameter c=2, and Kp

=� �or r=1�. The higher line with
the first order transition is for n
=5, while the lower line is for n
=1. The dotted lines are the theo-
retical predictions, while the solid
line is a guide for the eye linking
the error bars which are measure-
ments from simulation experi-
ments. The agreement is reason-
able although, as in Fig. 2, we find
that the sharp transition is
smeared out due to the small sys-
tem size for over simulations �N
=200 spins�.

FIG. 5. We plot the probability
that a given node has degree k , pk

against k for n=0.5, r=0.6, Tf =J
=J0=1, and c=2 within the spin-
glass regime where other observ-
able values are m=0 and q
�0.581. The true degree distribu-
tion is given by crosses, for com-
parison we have also given the
Poisson distribution with the same
value of c̄ with circles. Although
there are differences between the
two, for this set of parameters the
difference is very small.
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mean c̄. In fact, in the paramagnetic phase, we know that
P���=2−n and thus we find c̄ exactly from �18� without in-
voking replica symmetry, namely c̄PM=c coshn��J�, which is
independent of r since cosh is an even function. Thus the
average degree is independent of the bond disorder �in this
model� in the paramagnetic phase. Here, the degree distribu-
tion also scales linearly with c. By using the fact that in the
paramagnetic phase we also have U���=V���=2−n, we can
also see that ��k�=e−c̄PMc̄PM

k /k!, i.e., the degree distribution
is exactly Poisson. We also find exact results in the fully
ferromagnetic phase where P���=U���=V���=
����,�1.
There c̄FM=c�e�fnJ�J, and ��k�=e−c̄FMc̄FM

k /k!. In both these
cases the degree distribution is exactly Poisson. This can be
understood on the basis that in both phases there is no ener-
getic gain in having any particular cij =1, since it will not
affect the spin distribution �they are either all set to be
aligned or fully random� and thus the degree distribution will
be the maximum entropy one, i.e., Poisson. It is also clear
that there is a range of ordered states between the two ex-
tremes above. We cannot say anything further analytically
about the degree distribution there, although it is possible to
show that the degree distribution is not exactly a Poisson
distribution. However, we may evaluate our order parameter
equations numerically, and we find that although the degree
distribution is not Poisson, it is very close, as shown in Fig.
5. It was not obvious that this should be the case, and indeed,
the increased critical temperature for a scale free degree dis-
tribution would have suggested that this could be optimal,
since it increases ordering, but it transpires that this does not
occur here.

VI. POPULATION DYNAMICS AND SIMULATIONS

In this section we briefly discuss issues related to the nu-
merical solution of the equations and further particulars on
the implementation of the simulation experiments.

A. Population dynamics

The trio of self-consistent Eqs. �26�–�28� has been solved
with the population dynamics method of �20�. The main dif-
ference is that one is now required to weight the averages of
the field distributions by an n-dependent factor. In practice,
expressions of the form ��x��=�dx ��x�w�x���x�−g�x��, for
some arbitrary probability density ��x�, weight w�x�, and
updating function g�x�, are solved by sampling values of x
from the density ��x� and updating x�→g�x� with weight
w�x�. To interpret this weighting term, one can write w�x�
= �w�x��+ p, where �w�x�� is the integer part of w�x�, and p is
the fractional part. At each iteration step we replace �w�x�� of
the population members with x� and a further member with
probability p. In the implementation of the above algorithm
we have typically used field populations of size N=25 000
and assumed equilibration of the algorithm after 2000 steps.

B. Simulations

In order to check the validity of our theoretical work, we
performed numerical simulations of this model. To do this

we needed to introduce a dynamical process on both the
spins and the graph which will converge to an equilibrium
distribution described by their respective Hamiltonians. One
way to do this is via Glauber dynamics �22�, the dynamics
then automatically obey detailed balance. The transition rates
between a given state and another state with a single “spin”
flip �where we take spin in the broader sense to include the
binary variables �cij� and �Jij� as well as the more familiar
��i�� is determined by half the energy difference �or local
field� between the two states. Defining general spin flip op-
erators via Fij

c ��c11,c12,… ,cNN�=��c11,c12,… ,
−cij ,… ,cNN� and similarly for Fij

J the Glauber rates can be
written as

W�Fij
c c,c� =

1

2
�1 − tanh	2cij − 1

2
log

c

N

−
n

2
log�e−�f�2cij−1��iJij�j��� , �37�

W�Fij
J J,J� =

1

2
�1 − tanh	JijKp −

n

2
log�e−2�f�icijJij�j��� ,

�38�

where the angular brackets denote averages over the fast pro-
cess for the given realization of the graph and bonds.

The nature of the coupled dynamics means that for each
change to the graph �the slow dynamics�, one must reequili-
brate the spins, measure the averages as required in the
above equation, and subsequently change the graph configu-
ration again. Thus the computation effort required to equili-
brate the slow system is very large compared to simulations
on a given, fixed, graph. In particular, for strongly disordered
graphs, where changing a single bond is expected to seri-
ously alter the free-energy surface, it is very difficult to ob-
tain reasonable statistics. For the simpler case of purely fer-
romagnetic bonds, namely for Kp=� �or r
=eKpJ /2 cosh�KpJ�=1�, changing any given bond implies
that the new equilibrium distribution will be very close to the
old one and the equilibration times will be in general, within
reasonable limits. For cases of bond disorder with r�1, frus-
tration effects come into play and simulations can require
considerable time, even for small system sizes. With this in
mind we have only focused our efforts on cases of r=1. We
have performed simulations on systems with N=200, and in
Figs. 2 and 4 we compare the results with our theoretical
predictions. Due to the small system size, we must expect
that there are persistent errors due to the relatively small
system size, smearing of all phase transitions, and large error
bars on any given measurement. Bearing this all in mind we
feel that the results, particularly for the average connectivity,
clearly support the theory.

VII. CONCLUSIONS

The study of complex networks has recently become a
very popular field due to their ubiquity in nature, technology,
and social interaction, where these fields are meant in a
broad sense. While the statistical structure characterizing real
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world networks �path lengths, degree distributions,…� and
models that recreate these properties have been extensively
studied from experimental measurements on real world sys-
tems, through numerical simulations and theory, understand-
ing the behavior of networked systems based on local rules
�dynamics� is still a relatively unexplored area �19�. We have
presented a solvable model that examines a spin system on a
small world graph with which we have probed cooperative
behavior of the entire system �both of the graph and the
spins�. To overcome the theoretical challenge of systems
evolving on disparate timescales we have focussed on the
adiabatic limit; the graph evolves infinitely slowly relative to
the spin variables. This allows us to treat the model using the
well developed thermodynamics of replica theory, rather than
having to treat the dynamics explicitly. The advantage of this
approach is twofold. First, the results are exact in the ther-
modynamic limit in the region where replica symmetry is
stable. We have not examined replica symmetry-breaking in
our model, however experience suggests that it would only
occur for n�1, at low temperatures �high values of � f�, and
for some critical amount of disorder in the bonds �Jij�. The
second benefit of this approach is related to the relative sim-
plicity of our present approach. We do not specify in advance
the dynamics of the graph, but instead only describe it
through its equilibrium energy function. Thus the resulting
graph structure becomes an observable itself, rather than an
object which is fixed from the start. Indeed, naive intuition
may suggest that the optimal structure could have been scale
free, so that ordering in the spins would have occurred at a
higher temperature. It turns out that this was not the case,
apparently due to entropic reasons.
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APPENDIX A: THERMODYNAMIC EXPRESSIONS FOR
NATURAL n

Since the replica dimension n represents the ratio of tem-
peratures of the fast versus the slow process, it can, in prin-
ciple, take any value n�0. In the special case where n�N it
turns out that both the analysis and numerical implementa-
tion of the equations can be simplified. In this appendix we
will describe the key steps of this approach.

First, let us impose replica symmetry. The requirement of
permutation invariance can be expressed, e.g., in the form,
X���=X������, for any distribution of the replicated spins,
namely for X� �P ,U ,V�. Since n takes only integer values
here, we can implement this by considering

X��� = �
�=0

n

X����	2� − n;�
�

��� . �A1�

This ansatz holds for any distribution X��� and in particular
as X� �P ,U ,V�, we define the ansatz in terms of the densi-

ties X� �P ,U ,V�. Normalization of X��� requires

��=0
n X����n

� �=1.

Our self-consistent equations for �P ,U ,V� �11�–�13� can
now be transformed into relations between the field distribu-
tions �P ,U ,V�. It is convenient to begin by working out an
identity for the replica symmetric form of the general expres-
sion ��X���F�� ·��. We insert the replica symmetric ansatz
�A1� for X, use the gauge transformation ��→����, and
introduce the representation of unity 1=�k=0

n ��2k−n ;�����,
which results in

�
�

X���F�� · �� = �
�=0

n

�
k=0

n

X����	2k − n;�
�

���
	�

�

�	2� − n;�
�

�����F
�
�

��� .

�A2�

We now define the set of replica indices
S= ��� �1,… ,n� :��=1� and its complement

S̄= ��� �1,… ,n� :��=−1�, which allows us to write
������=���S��−���S̄��. Isolating these last two summa-
tions via the unities 1=�k1=0

k ��2k1−k ;���S��� and
1=�k2=0

n−k ��2k2+k−n ;���S̄��� and using the general identity

��1¯�p
��2q− p ;��=1

p ���= �p

q �, we obtain

�
�

X���F�� · �� = �
�,k=0

n

�
k1=0

k

�
k2=0

n−k

X����	2k − n;�
�

���
	 ��� + k + k2 − k1 − n;0�

	F„2�k1 + k2� − n…
 k

k1
�
n − k

k2
� .

�A3�

Using the above identity �and very similar manipulations� we
can write our self-consistent equations as

U��� = 
0
−1�n�exp�cAP��,J��AU��,J0� , �A4�

V��� = 
0
−1�n��

j=0

n

�
k1=0

j

�
k2=0

n−j

V�j�ecAP�j,J�+�fJ0�2�k1+k2�−n�

	��� + j + k2 − k1 − n;0� , �A5�

P��� =
U���V���

�
�=0

n 
n

�
�U���V���

. �A6�

The largest eigenvalue, 
0�n�, follows from the above by

utilizing the normalization condition ���n

� �U���=1. We have

introduced the convenient shorthand
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AX��,J� = �
i=0

n

�
j=0

�

�
k=0

n−�

X�i���i + k + � − j − n;0�
�

j
�
n − �

k
�

	�e�fJ�2�j+k�−n��J �A7�

for X� �P ,U ,V� and X� �P ,U ,V�, respectively.
We now turn our attention to the system’s observables.

First, let us work the magnetization �14� and spin-glass �15�
order parameters. We substitute the replica symmetric ansatz
for P��� �A1� into their definitions, which together with a
minor rearrangement gives

m = �
�=1

n

P���
n − 1

� − 1
� − �

�=0

n−1

P���
n − 1

�
� , �A8�

q = �
�=2

n

P���
n − 2

� − 2
� + �

�=0

n−2

P���
n − 2

�
� − �

�=1

n−1

P���
n − 2

� − 1
� .

�A9�

Let us now proceed to the observables probing organiza-
tion phenomena within the graph. Here we will need the
integer n representation of the transfer matrix. Inserting �A1�
in �10� leads to

T�,���P� = �
k=0

n

�
2k − n;�
�

���e�fJ0�·��+cAP�k,J�.

�A10�

After some combinatorial work, the fraction of bonds which
are not energetically optimized �17� is found to be given by

� = D1�
i=1

n

�
j=0

n−1

�
k=0

i−1

e�fJ0�2k−j−1�
n − 1

i − 1
�
i − 1

k
�
n − i

j − k
�

	�V�i�U�j�ecAP�i,J� + V�j�U�i�ecAP�j,J��

+ D22p�
i=1

n

�
j=0

n−1

�
k=0

i−1

P�i�P�j�
n − 1

i − 1
�
i − 1

k
�

	
n − i

j − k
�e�fJ�n+2�2k−i−j�� + D2�1 − p��

i=1

n

�
j=1

n

�
k=0

i−1

P�i�P�j�

	
n − 1

i − 1
�
i − 1

k
�
 n − i

j − k − 1
�e�fJ�n+2�2k+1−i−j��

+ D2�1 − p��
i=0

n−1

�
j=0

n−1

�
k=0

i

P�i�P�j�
n − 1

i
�
 i

k
�

	
n − i − 1

j − k
�e�fJ�n+2�2k−i−j��. �A11�

The average number of connections �18� is found to be

c̄ = c�
k=0

n

P�k�AP�k;J�
n

k
� , �A12�

while the degree distribution �20� becomes

��k� �
ck

k!�i=0

n 
n

i
�V�i�U�i�AP

k �i,J� . �A13�
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